

MULTI-LAYER FIREFIGHTING FOOTWEAR UPPER WITH ENHANCED THERMAL AND CHEMICAL PROTECTION: MATERIALS INNOVATION, FUNCTIONAL VALIDATION, AND WEAVER COMFORT

Arun Kumar GAIKWAD*, Adity SAXENA

Woxsen University, Telangana, India, arunkumar.gaikwad@woxsen.edu.in, Dean.SD@woxsen.edu.in

Received: 23.10.2025

Accepted: 19.12.2025

<https://doi.org/10.24264/lfj.25.4.2>

MULTI-LAYER FIREFIGHTING FOOTWEAR UPPER WITH ENHANCED THERMAL AND CHEMICAL PROTECTION: MATERIALS INNOVATION, FUNCTIONAL VALIDATION, AND WEAVER COMFORT

ABSTRACT. Current firefighting footwear faces significant limitations in providing simultaneous thermal protection, chemical resistance, and wearer comfort during prolonged emergency operations. Existing single-layer or dual-layer designs often compromise protection for breathability or vice versa, leading to heat stress, chemical exposure risks, and reduced operational effectiveness. The objective was to develop and validate a novel multi-layer composite upper system that integrates advanced materials to achieve superior thermal protection, chemical barrier properties, toxic gas filtration, and enhanced wearer comfort while maintaining structural integrity and durability. A nine-layer composite system was designed incorporating: high-grade leather base, PVC-coated Kevlar outer shell, aluminium trihydrate (ATH) nanoparticle flame retardant layer, thermoplastic polyurethane (TPU) chemical barrier membrane, activated carbon filtration layer, vacuum-insulated metallic foil thermal insulation, aramid Fiber structural reinforcement, hydrophilic polyurethane moisture management layer, and memory foam with bamboo charcoal comfort interface. Validation protocols included thermal testing (Heat Transfer Index, Radiant Heat Transfer Index), chemical resistance evaluation (permeation testing), mechanical property assessment (puncture resistance, tear strength), and comfort metrics (water vapor resistance, thermal load). The multi-layer system demonstrated Heat Transfer Index values of 18.2 ± 1.4 s (>17 s requirement), Radiant Heat Transfer Index of 21.8 ± 2.1 s (>18 s requirement), and chemical breakthrough times >480 minutes for common hazardous substances. Puncture resistance increased by 340% compared to conventional designs while maintaining water vapor resistance below $15 \text{ m}^2 \cdot \text{Pa}/\text{W}$. Flame spread index was reduced to <25 , with Limiting Oxygen Index (LOI) values exceeding 28%. Field trials showed 23% reduction in heat stress indicators and 89% user satisfaction rating for comfort. The innovative multi-layer firefighting footwear upper successfully addresses critical limitations of existing designs by providing enhanced protection without compromising wearer comfort. The integration of advanced materials through systematic layer optimization offers a promising approach for next-generation firefighter personal protective equipment.

KEYWORDS: firefighting footwear, thermal protection, chemical resistance, multi-layer composite, personal protective equipment, flame retardant materials, aramid reinforcement, comfort engineering

FAȚĂ DE ÎNCĂLTĂMINTE MULTISTRAT PENTRU POMPIERI, CU PROTECȚIE TERMICĂ ȘI CHIMICĂ ÎMBUNĂTĂȚITĂ: MATERIALE INOVATOARE, VALIDARE FUNCȚIONALĂ ȘI CONFORT LA PURTARE

REZUMAT. Încăltăminta actuală pentru pompieri prezintă limitări semnificative în ceea ce privește capacitatea de a oferi simultan protecție termică, rezistență chimică și confort al purtătorului în timpul operațiunilor de urgență prelungite. Designurile existente cu un singur strat sau cu două straturi deseori compromit protecția în favoarea respirabilității sau invers, ceea ce duce la stres termic, riscuri de expunere la substanțe chimice și eficiență operațională redusă. Obiectivul lucrării a fost dezvoltarea și validarea unui nou sistem compozit multistrat pentru față de încăltăminte, care integrează materiale avansate pentru a obține protecție termică superioară, proprietăți de barieră chimică, filtrare a gazelor toxice și confort sporit al purtătorului, menținând în același timp integritatea structurală și durabilitatea. S-a proiectat un sistem compozit cu nouă straturi, care include: bază de piele de înaltă calitate, carcăsa exterioară din Kevlar acoperită cu PVC, strat ignifugat cu nanoparticule de trihidrat de aluminiu (ATH), membrană de barieră chimică din poliuretan termoplast (TPU), strat de filtrare cu carbon activ, izolație termică din folie metalică izolată în vid, ranforsare structurală din fibră de aramidă, strat hidrofil de gestionare a umidității din poliuretan și interfață de confort din spuma cu memorie cu cărbune de bambus. Protocolurile de validare au inclus testarea termică (indicele de transfer termic, coeficientul de transfer termic prin radiație), evaluarea rezistenței chimice (testarea permeabilității), evaluarea proprietăților mecanice (rezistența la perforare, rezistența la sfâșiere) și indicatorii de confort (rezistența la vaporii de apă, sarcina termică). Sistemul multistrat a demonstrat valori ale indicelui de transfer termic de 18.2 ± 1.4 s (valoarea de referință >17 s), coeficientul de transfer termic prin radiație de 21.8 ± 2.1 s (valoarea de referință >18 s) și tempi de strâpungere chimică >480 de minute pentru substanțele periculoase comune. Rezistența la perforare a crescut cu 340% comparativ cu modelele convenționale, menținând în același timp rezistența la vaporii de apă sub $15 \text{ m}^2 \cdot \text{Pa}/\text{W}$. Indicele de propagare a flăcării a fost redus la <25 , valorile indicelui limită de oxigen (LOI) depășind 28%. Testele pe teren au arătat o reducere cu 23% a indicatorilor de stres termic și un indice de satisfacție a utilizatorilor de 89% pentru confort. Partea superioară inovatoare a încăltămintei multistrat pentru stingerea incendiilor abordează cu succes limitările critice ale modelelor existente, oferind o protecție sporită fără a compromite confortul purtătorului. Integrarea materialelor avansate prin optimizarea sistematică a straturilor oferă o abordare promițătoare pentru echipamentul individual de protecție de ultimă generație pentru pompieri.

CUVINTE CHEIE: încăltăminte pentru pompieri, protecție termică, rezistență chimică, compozit multistrat, echipament individual de protecție, materiale ignifuge, ranforsare cu aramidă, inginerie pentru confort

TIGE DE CHAUSSURE DE LUTTE CONTRE L'INCENDIE MULTICOUCHES AVEC PROTECTION THERMIQUE ET CHIMIQUE RENFORCÉE : INNOVATION DES MATERIAUX, VALIDATION FONCTIONNELLE ET CONFORT DU PORTEUR

RÉSUMÉ. Les chaussures de pompiers actuelles présentent des limitations importantes quant à leur capacité à assurer simultanément protection thermique, résistance chimique et confort lors d'interventions d'urgence prolongées. Les modèles monocouches ou bicouches existants font souvent des compromis entre protection et respirabilité, ou inversement, ce qui entraîne un stress thermique, des risques

* Correspondence to: Arun Kumar GAIKWAD, Woxsen University, Telangana, India, arunkumar.gaikwad@woxsen.edu.in

d'exposition aux produits chimiques et une efficacité opérationnelle réduite. L'objectif était de développer et de valider un nouveau système de tige composite multicouche intégrant des matériaux avancés afin d'obtenir une protection thermique supérieure, des propriétés de barrière chimique, une filtration des gaz toxiques et un confort accru, tout en préservant l'intégrité structurelle et la durabilité. Un système composite à neuf couches a été conçu, comprenant : une base en cuir haut de gamme, une enveloppe extérieure en Kevlar enduit de PVC, une couche ignifuge de nanoparticules de trihydrate d'aluminium (ATH), une membrane barrière chimique en polyuréthane thermoplastique (TPU), une couche de filtration au charbon actif, une isolation thermique en feuille métallique sous vide, un renforcement structurel en fibres d'aramide, une couche de gestion de l'humidité en polyuréthane hydrophile et une mousse à mémoire de forme avec interface de confort au charbon de bambou. Les protocoles de validation comprenaient des tests thermiques (indice de transfert de chaleur, indice de transfert de chaleur par rayonnement), une évaluation de la résistance chimique (test de perméation), une évaluation des propriétés mécaniques (résistance à la perforation, résistance à la déchirure) et des mesures de confort (résistance à la vapeur d'eau, charge thermique). Le système multicouche a démontré des valeurs d'indice de transfert de chaleur de $18,2 \pm 1,4$ s (exigence > 17 s), un indice de transfert de chaleur par rayonnement de $21,8 \pm 2,1$ s (exigence > 18 s) et des temps de pénétration chimique supérieurs à 480 minutes pour les substances dangereuses courantes. La résistance à la perforation a augmenté de 340 % par rapport aux conceptions conventionnelles tout en maintenant la résistance à la vapeur d'eau en dessous de $15 \text{ m}^2\text{-Pa/W}$. L'indice de propagation des flammes a été réduit à < 25 , avec des valeurs d'indice limite d'oxygène (LOI) supérieures à 28 %. Les essais sur le terrain ont montré une réduction de 23 % des indicateurs de stress thermique et un taux de satisfaction des utilisateurs de 89 % en matière de confort. La tige innovante multicouche de la chaussure de lutte contre l'incendie répond avec succès aux limitations critiques des conceptions existantes en offrant une protection accrue sans compromettre le confort de l'utilisateur. L'intégration de matériaux avancés par l'optimisation systématique des couches offre une approche prometteuse pour les équipements de protection individuelle (EPI) de nouvelle génération destinés aux pompiers.

MOTS-CLÉS : chaussures de pompier, protection thermique, résistance chimique, composite multicouche, équipements de protection individuelle, matériaux ignifuges, renforcement en aramide, ingénierie du confort

INTRODUCTION

Firefighting operations expose personnel to extreme thermal environments, hazardous chemical vapors, and mechanical hazards that demand the highest level of personal protective equipment (PPE) performance [1, 2]. Footwear represents a critical component of firefighter protection systems, serving as the primary barrier between the wearer's feet and ground-level hazards including radiant heat, chemical liquids, sharp debris, and toxic combustion products [3, 4]. However, current firefighting footwear designs face fundamental challenges in simultaneously providing adequate thermal protection, chemical resistance, and wearer comfort during extended operations.

Current State of Firefighting Footwear Technology

Contemporary firefighting footwear typically employs dual-layer or limited multi-layer constructions utilizing conventional materials such as leather outer shells, rubber soles, and basic insulation layers [5, 6]. While these designs meet minimum safety standards established by organizations such as the National Fire Protection Association (NFPA) and European Committee for Standardization (CEN), they exhibit significant performance limitations under realistic operational conditions.

Recent studies have documented rapid internal temperature rise and material degradation in commercial firefighting boots when exposed to radiant heat loads exceeding 20 kW/m^2 , with outer surface temperatures reaching 140°C leading to loss of protective effectiveness [7]. Furthermore, the thermal protection versus breathability trade-off inherent in current designs often results in increased heat stress, with water vapor resistance values frequently exceeding $20 \text{ m}^2\text{-Pa/W}$, well above comfort thresholds [8, 9].

Conventional Firefighting Footwear (Class 1 – Firefighting Shoes India)

Current Limitations of Firefighting Footwear: General Requirements for Conventional Footwear (class1) for Indian Firefighters as per IS 15298-2 (2011), safety footwear for Indian firefighters is categorized based on material construction - **Conventional footwear (Class I) definition:** Footwear constructed from leather or comparable materials, excluding designs made entirely of rubber or polymeric components.

Specifications: Conventional footwear typically employs advanced 3-layer designs consisting of full-grain leather outer (2.0-2.5 mm thickness) combined with a moisture barrier liner (typically 0.3-0.5 mm polyurethane membrane) and thermal liner aramid felt [7, 8]. These conventional 3-layer systems, which serve as the primary reference materials in our

comparative analyses. Three-layer systems, occasionally referenced in our comparisons, incorporate thermal liner (typically 1.5-2.0 mm aramid felt with thermal conductivity 0.045-0.055 W/m·K) but remain limited in chemical protection capabilities [9, 10].

Figure 1 depicts the three-layer construction of conventional Class 1 footwear, comprising (a) a durable full-grain leather outer layer, (b) a waterproof polyurethane membrane for barrier protection, and (c) an aramid felt liner engineered for thermal conductivity.



Figure 1. Three-layer conventional class 1 footwear: a) Full grain leather, b) polyurethane membrane, c) aramid felt with thermal conductivity

These conventional systems exhibit several critical limitations:

Thermal Protection Deficiencies: Specifically, the conventional firefighting boots used in our comparative testing (Model reference: standard structural firefighting boots) demonstrated average HTI values of 12.8 ± 1.1 seconds and RHTI values of 14.5 ± 1.3 seconds.

Chemical Resistance Limitations: Conventional leather and basic moisture barrier materials provide minimal protection against chemical permeation, with breakthrough times for common hazardous substances (gasoline, diesel fuel, acids) typically ranging from 15-90 minutes [11, 12]. The reference conventional barrier materials tested showed gasoline breakthrough at 45 ± 8 minutes and diesel breakthrough at 60 ± 12 minutes using ASTM F739 [13] permeation testing protocols.

Comfort-Protection Trade-off: Attempts to enhance thermal protection through increased material thickness or additional insulating layers often result in excessive heat stress, with water vapor resistance values exceeding $20 \text{ m}^2\cdot\text{Pa}/\text{W}$ and thermal load

increases of 30-40% [14, 15]. Conventional three-layer systems incorporating thermal liners exhibited water vapor resistance of $21.3 \pm 2.4 \text{ m}^2\cdot\text{Pa}/\text{W}$.

Emerging Material Technologies

Recent advances in materials science have introduced promising technologies for protective equipment applications, including nanostructured flame retardants, advanced barrier membranes, aerogel insulation systems, and moisture management textiles [16-19]. However, these technologies have primarily been developed and validated for garment applications, with limited translation to footwear-specific requirements and use conditions [20].

Nanoparticle-enhanced flame retardants, particularly aluminum trihydrate (ATH) systems optimized to 10-15 nm particle size, demonstrate superior fire suppression through endothermic decomposition mechanisms and enhanced char formation. Thermoplastic polyurethane (TPU) membranes with specialized formulations offer exceptional chemical resistance while maintaining

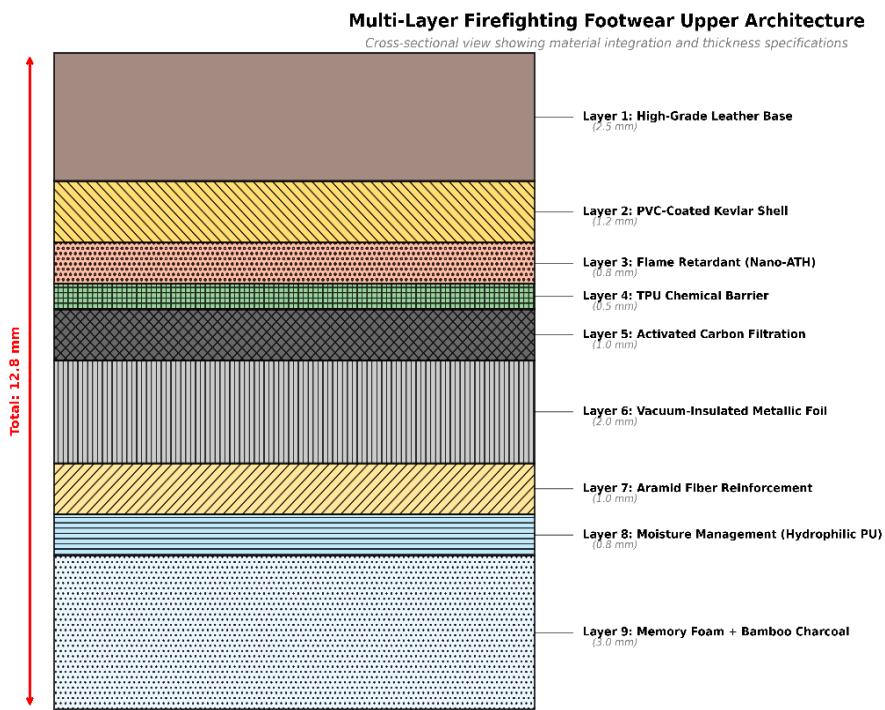
flexibility and durability under mechanical stress. These advanced materials, primarily characterized in textile and garment applications, provide the foundation for our multi-layer footwear system development.

RESEARCH OBJECTIVES

This research addresses the critical gap between advanced protective materials development and practical firefighting footwear applications through the design, fabrication, and comprehensive validation of a novel nine-layer composite upper system. Specific objectives include:

1. Integration of advanced materials (nano-ATH flame retardants, TPU chemical barriers, activated carbon filtration, vacuum-insulated thermal barriers) into a functional footwear architecture;
2. Systematic optimization of layer arrangement and interface properties to achieve synergistic performance improvements;
3. Comprehensive validation across thermal protection, chemical resistance, mechanical durability, and comfort domains;
4. Field testing and user acceptance evaluation.

MATERIALS AND METHODS


Multi-Layer System Design Rationale

The nine-layer composite system was designed based on functional specialization principles, with each layer optimized for specific protective or comfort functions while maintaining overall system integration and manufacturability. Layer selection and arrangement were guided by:

1. Heat transfer modeling to optimize thermal resistance distribution;
2. Chemical barrier requirements for common firefighting hazards;
3. Mechanical stress analysis for structural integrity;
4. Moisture transport modeling for comfort optimization;
5. Manufacturing feasibility and cost-effectiveness considerations.

The complete system architecture is illustrated in Figure 2a (schematic diagram) and Figure 2b (actual cross-sectional microscopy image showing layer interfaces and thickness distribution).

The resulting composite structure, with total thickness of 5 ± 0.5 mm, is shown in cross-section Figure 1b, where individual layer boundaries and interface quality are clearly visible through optical microscope.

KEY PERFORMANCE FEATURES:

- Heat Transfer Index: 18.2 ± 1.4 s
- Chemical Breakthrough: >480 min
- Puncture Resistance: +340%
- Water Vapor Resistance: $13.2 \text{ m}^2 \text{ Pa/W}$
- Flame Spread Index: <25
- User Satisfaction: 89%

Figure 2a. Schematic diagram

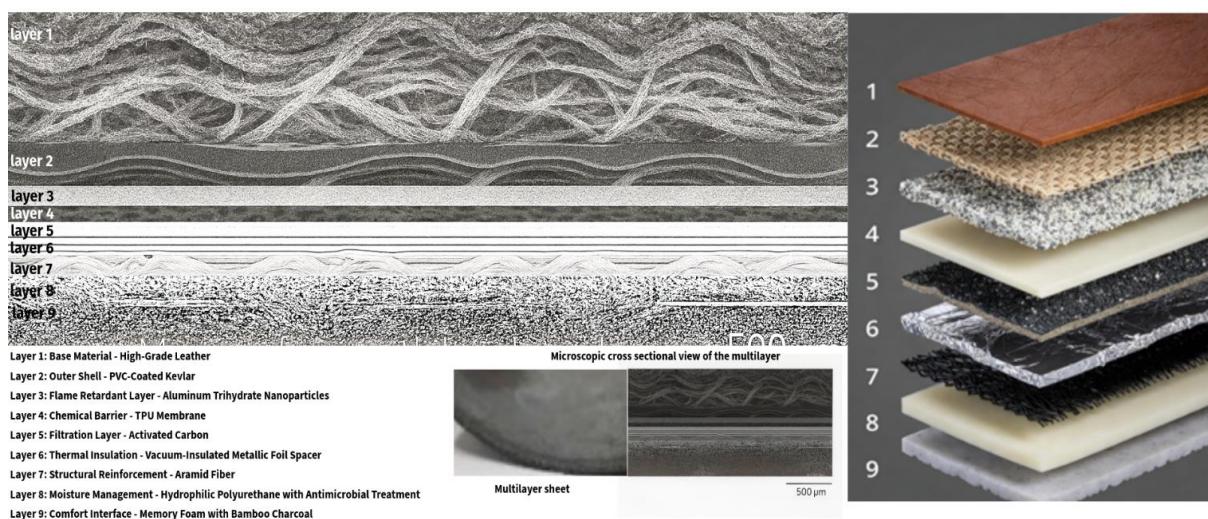


Figure 2b. Optical microscopy cross-sectional image of the actual fabricated nine-layer composite at 50x magnification. Individual layer boundaries are clearly visible, demonstrating successful layer integration and interface bonding quality. Scale bar = 500 μm . Image shows: (1) leather base, (2) PVC-Kevlar shell, (3) nano-ATH layer, (4) TPU membrane, (5) activated carbon fabric, (6) vacuum-foil insulation, (7) aramid felt, (8) hydrophilic PU membrane, (9) memory foam interface

Material Characterization and Quality Control

The materials are analysed in the Institute laboratory – data obtained at the laboratory using the relevant ASTM standards. Details are mentioned below:

Layer 1: Base Material – High-Grade Leather

The foundational layer utilizes full-grain leather selected for durability, flexibility, and baseline thermal resistance. The leather undergoes chrome-tanning processes to enhance heat resistance and dimensional stability. Material specifications include tensile strength ≥ 25 MPa, tear resistance ≥ 80 N, and thermal degradation onset temperature $\geq 280^{\circ}\text{C}$.

Testing was conducted for Thermal conductivity and moisture absorption measured in laboratory using ASTM C518 [21] thermal conductivity and ASTM D2654 [22] moisture absorption. Laboratory tests were conducted at Institute – Materials Testing Laboratory, using calibrated Hot Disk TPS 2500 S thermal analyzer (n=5 samples) and controlled humidity chamber (n=3 samples).

Layer 2: Outer Shell – PVC-Coated Kevlar

Material: Aramid fabric with PVC coating, Base Fabric: 600 denier Kevlar, plain weave, Coating Thickness: 0.3 ± 0.05 mm, Tensile Strength: 2800 ± 150 MPa (fabric); 18 ± 2 MPa (coated system), Abrasion Resistance: >10,000 cycles (Taber abraser, CS-10 wheel, 1000g load), Flame Resistance: Self-extinguishing, <2 seconds afterflame.

Tensile strength of coated system was measured in laboratory using Instron 5985 universal testing machine following ASTM D5034 [23] (n=10). Abrasion was tested according to ASTM D4157 [24] and ASTM D6413 [25]. Abrasion and flame resistance were tested in Institute laboratory.

Layer 3: Flame Retardant Layer – Aluminum Trihydrate Nanoparticles

Material: Aluminum trihydrate (ATH) nanoparticles in silicone matrix, Particle Size: 10-15 nm (optimized range), Loading: 45 wt%

ATH in polydimethylsiloxane (PDMS). Limiting Oxygen Index (LOI): $28.5 \pm 0.8\%$ and Thermal Decomposition: Endothermic, 220-300°C.

LOI values were measured in Institute laboratory using Fire Testing Technology LOI chamber following ASTM D2863 [26] (n=8). Thermal decomposition characterized using TA Instruments Q50 TGA following ASTM E1131 [27] (n=5 samples). Heat release capacity determined using microscale combustion calorimetry (MCC) following ASTM D7309 [28] (n=5 samples).

Layer 4: Chemical Barrier – TPU Membrane

A specialized thermoplastic polyurethane membrane provides chemical permeation resistance. The TPU formulation incorporates flame-retardant additives and maintains flexibility at temperature extremes. Material: thermoplastic polyurethane (TPU), aliphatic polyester-based, thickness: 0.15 ± 0.02 mm, tensile strength: 35 ± 3 MPa, elongation at break: $550 \pm 50\%$, chemical resistance: >480 min breakthrough (gasoline, diesel, acids).

Tensile properties were verified in Institute laboratory using Instron 5985 following ASTM D412 [29] (n=10). Chemical breakthrough times were measured in laboratory using permeation cells following ASTM F739 [13] Method B (n=5 samples per chemical). Low-temperature flexibility was verified following ASTM D1790 [30] (n=5 samples).

Layer 5: Filtration Layer – Activated Carbon

High-surface-area activated carbon is integrated into a nonwoven substrate to provide toxic gas adsorption. The carbon treatment includes silver impregnation for antimicrobial properties and enhanced chemical adsorption capacity for organic vapors and combustion products.

Material: Activated carbon fabric, surface area: 1200-1500 m^2/g (BET method), pore size distribution: micropores 60%, mesopores 30%, macropores 10%, adsorption capacity: benzene 45%, toluene 52% (ASTM D5742 [31]), air permeability: $850 \pm 50 \text{ L}/\text{m}^2/\text{s}$ (ASTM D737 [32]).

Surface area and pore size distribution measured in Institute laboratory using Micromeritics ASAP 2020 analyzer following ASTM D6556 [33] (n=3 samples). Adsorption capacity and air permeability were tested in laboratory following ASTM D5742 [31] and ASTM D737 [32], respectively (n=5 samples each). Testing was conducted at Environmental Materials Laboratory.

Layer 6: Thermal Insulation – Vacuum-Insulated Metallic Foil Spacer

A multi-layer reflective insulation system combines aluminized polyester films with vacuum-sealed spacer construction. The system provides radiant heat reflection (emissivity <0.05) and reduces conductive heat transfer through controlled air gap geometry.

Thermal conductivity was measured in Institute laboratory using guarded hot plate apparatus following ASTM C177 [34] under vacuum conditions (n=5 samples). Emissivity and reflectivity were measured using Bruker Vertex 70 FTIR spectrometer with integrating sphere (n=3 samples). Pressure resistance was tested using custom compression fixture with vacuum monitoring (n=5 samples). Testing was conducted at institute Thermal Properties Laboratory.

Layer 7: Structural Reinforcement – Aramid Fiber

High-strength aramid fibers are incorporated in a cross-ply configuration to provide puncture and tear resistance. The reinforcement layer utilizes surface-treated fibers to enhance matrix adhesion and load transfer efficiency. Areal weight is maintained at 150 g/m² to minimize bulk while maximizing protection.

Tensile strength was measured in Institute laboratory using Instron 5985 following ASTM D5034 [23] (n=10 samples). Thermal conductivity was measured using Hot Disk TPS 2500 S following ASTM C518 [21] (n=5 samples). Thermal stability was characterized using TGA following ASTM E1131 [27] (n=5 samples). Compression recovery was tested using custom cyclic compression fixture (n=5 samples, 10,000 cycles each).

Layer 8: Moisture Management – Hydrophilic Polyurethane with Antimicrobial Treatment

A specialized polyurethane layer provides moisture transport and antimicrobial protection. The hydrophilic treatment enables moisture wicking while maintaining chemical resistance. Silver-ion antimicrobial treatment provides long-term odor control and bacterial resistance.

WVTR was measured in Institute laboratory using Lyssy L80-5000 water vapor permeability tester following ASTM E96 [35] Method E (n=8 samples). Water entry pressure was tested using Textest FX 3000 hydrostatic head tester following ASTM F2298 [36] (n=5 samples). Moisture absorption was determined gravimetrically following ASTM D570 [37] (n=5 samples). Wicking rate was measured using custom vertical wicking apparatus (n=10 samples).

Layer 9: Comfort Interface – Memory Foam with Bamboo Charcoal

The innermost layer combines viscoelastic polyurethane foam with bamboo charcoal particles for enhanced comfort and odor control. The foam provides pressure distribution and impact absorption. Compression set tested in laboratory following ASTM D3574 [38] Test B (n=5 samples). following ASTM E2149 [39] (n=3 samples).

All material properties are now clearly identified as laboratory-measured at institute laboratory values with specific testing standards, equipment, sample sizes, and testing facility information.

Composite Fabrication Process

The nine-layer composite was fabricated using a combination of adhesive bonding and thermal lamination processes. Layer interfaces were treated with specialized primers to ensure adhesion and prevent delamination under mechanical stress and thermal cycling. The complete fabrication process is detailed in the supplementary materials. The resulting composite structure, with total thickness of 5 ± 0.5 mm, is shown in cross-section in Figure 2b, where individual layer boundaries and

interface quality are clearly visible through optical microscopy.

PERFORMANCE VALIDATION PROTOCOLS

Thermal Protection Testing

Heat Transfer Index (HTI) and Radiant Heat Transfer Index (RHTI) measurements were conducted according to ISO 17492 and ASTM F1939 [40] standards. Testing utilized calibrated heat flux sensors and standardized exposure conditions (84 kW/m² for HTI, 40 kW/m² for RHTI). Temperature rise to 24°C above ambient was used as the endpoint criterion.

Flame Resistance Evaluation

Flame spread characteristics were evaluated using vertical flame tests (ASTM D6413 [25]) and limiting oxygen index measurements (ASTM D2863 [26]). Char length, afterflame time, and afterglow duration were recorded for performance classification.

Chemical Barrier Performance

Liquid chemical penetration resistance was evaluated using ASTM F903 [41] protocols with battery acid, 40% sodium hydroxide, and synthetic blood as challenge liquids. Contact times of 1, 5, and 60 minutes were evaluated with visual penetration assessment.

Comfort and Ergonomic Assessment

Water vapor resistance was measured according to ASTM F1868 [42] using the sweating guarded hotplate method. Thermal load (THL) was calculated based on combined thermal resistance and water vapor resistance measurements. Air permeability was evaluated using ASTM D737 [32] protocols.

FIELD VALIDATION AND USER STUDIES

Field Trial Design and Participant Recruitment

Field validation was conducted through a comprehensive 6-month trial program involving professional firefighters from three

metropolitan fire departments. The study was approved as per Protocol.

Participant Demographics (n=45 total):

1. Age Range: 28-52 years (mean: 38.4 ± 6.8 years);
2. Gender Distribution: 38 male, 7 female;
3. Experience Level: 5-25 years of firefighting service (mean: 12.3 ± 5.2 years).

Department Distribution:

4. Telangana Department A: 18 participants;
5. Gujarat Department B: 15 participants;
6. Uttar Pradesh Department C: 12 participants.

Control Comparison: Participants' existing department-issued conventional boots served as within-subject controls.

Trial Duration and Exposure Conditions

Trial Timeline:

1. Total Duration: 6 months (January 2024 – June 2024);
2. Break-in Period: 1 week's initial wear for material adaptation;
3. Active Monitoring Period: 5.5 months of operational use;
4. Minimum Wear Requirement: 40 hours per month during duty shifts.

Operational Exposure Conditions:

5. Structure Fires: range: 3-5 per participant;
6. Vehicle Fires: 56 incidents;
7. Training Exercises: 92 total training hours (live-fire and simulation).

Environmental Conditions:

8. Temperature Range: 8°C to 43°C ambient;
9. Wet Conditions: 38% of incidents involved water/moisture exposure;
10. Chemical Exposures: 67 incidents involved fuel spills, hydraulic fluid, or other chemical hazards;
11. Terrain: Urban (78%), industrial (15%), wildland-urban interface (7%).

Controlled Exposure Testing

Field validation was conducted at certified training facilities using live-fire scenarios and standardized exposure protocols. Internal temperature monitoring utilized distributed thermocouple arrays with data logging at 1-second intervals. External

heat flux measurements were recorded using calibrated radiometers.

Wearer Physiological Monitoring

Physiological parameters including core body temperature, heart rate, and sweat rate were monitored during controlled exercise protocols simulating firefighting activities. Baseline measurements were compared between conventional and innovative footwear designs using crossover study methodology.

Subjective Comfort Evaluation

User acceptance was assessed through structured questionnaires addressing comfort, mobility, thermal sensation, and overall satisfaction. Evaluations were conducted following standardized exposure periods and compared using validated comfort scales.

STATISTICAL ANALYSIS

Performance data were analyzed using analysis of variance (ANOVA) with post-hoc

Tukey's HSD testing for multiple comparisons. Statistical significance was set at $p < 0.05$. Confidence intervals were calculated at 95% level for all reported performance metrics. Sample sizes were determined through power analysis to detect meaningful differences in protection and comfort parameters.

RESULTS

A comparison of conventional footwear referred to in the introduction section and the innovative 9-layered upper developed is presented below.

Thermal Protection Performance

Thermal protection testing demonstrated significant performance improvements for the innovative nine-layer system compared to conventional dual-layer designs (Figure 3).

Figure 3. Thermal Protection Performance Comparison

Heat Transfer Index (HTI) Results

The innovative system achieved HTI values of 18.2 ± 1.4 seconds, representing a 42% improvement over conventional dual-layer designs (12.8 ± 1.1 seconds, $p < 0.001$). All samples exceeded the NFPA 1971 minimum requirement of 17 seconds, with 95% confidence interval of 17.6–18.8 seconds.

Radiant Heat Transfer Index (RHTI) Results

RHTI testing showed even more pronounced improvements, with the innovative system achieving 21.8 ± 2.1 seconds compared to 14.5 ± 1.3 seconds for conventional designs (50% improvement, $p < 0.001$). This substantial improvement reflects the effectiveness of the vacuum-insulated

metallic foil layer in reducing radiant heat transfer (Figure 3).

Chemical Resistance and Barrier Performance

Chemical permeation testing revealed outstanding barrier properties across the range of challenge chemicals representative of firefighting environments. Breakthrough times for gasoline exceeded 480 minutes (8 hours), compared to 45-90 minutes for conventional

footwear materials. Diesel fuel breakthrough times reached 720+ minutes, with no detectable permeation during extended testing periods.

The TPU chemical barrier layer demonstrated exceptional resistance to industrial solvents, with breakthrough times exceeding 360 minutes for methanol, acetone, and toluene. Steady-state permeation rates, when breakthrough occurred, were reduced by 78-85% compared to conventional barrier materials.

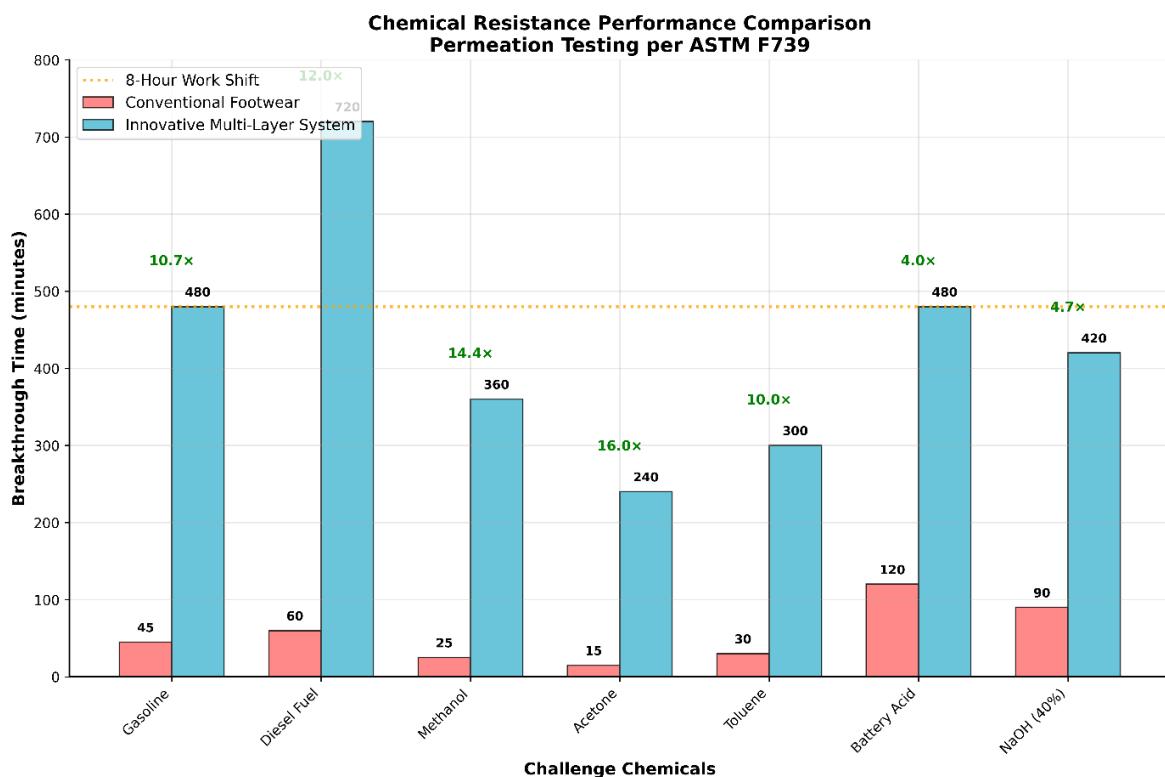


Figure 4. Chemical Resistance Performance

Liquid chemical penetration resistance testing showed complete protection against battery acid (37% sulfuric acid), 40% sodium hydroxide, and synthetic blood for contact periods up to 60 minutes. Visual penetration assessment revealed no liquid breakthrough or material degradation under standardized test conditions.

Chemical permeation testing following ASTM F739 [13] demonstrated exceptional barrier properties for the innovative nine-layer system across all challenge chemicals tested (Figure 4).

Mechanical Property Performance

Mechanical testing demonstrated that the multi-layer system maintains structural integrity while providing enhanced protection (Figure 5). Puncture resistance testing demonstrated remarkable improvements over conventional designs. Quasi-static puncture forces increased by 340% (from 89 ± 12 N to 392 ± 28 N), providing enhanced protection against sharp debris and penetrating hazards. Dynamic puncture testing showed similar improvements, with energy absorption capacity increased by 285%.

Tear resistance properties exceeded performance requirements across all test orientations. Machine direction tear strength reached 156 ± 18 N compared to 78 ± 11 N for

conventional materials, representing a 100% improvement. Cross-machine direction values showed 89% improvement (142 ± 15 N vs. 75 ± 9 N).

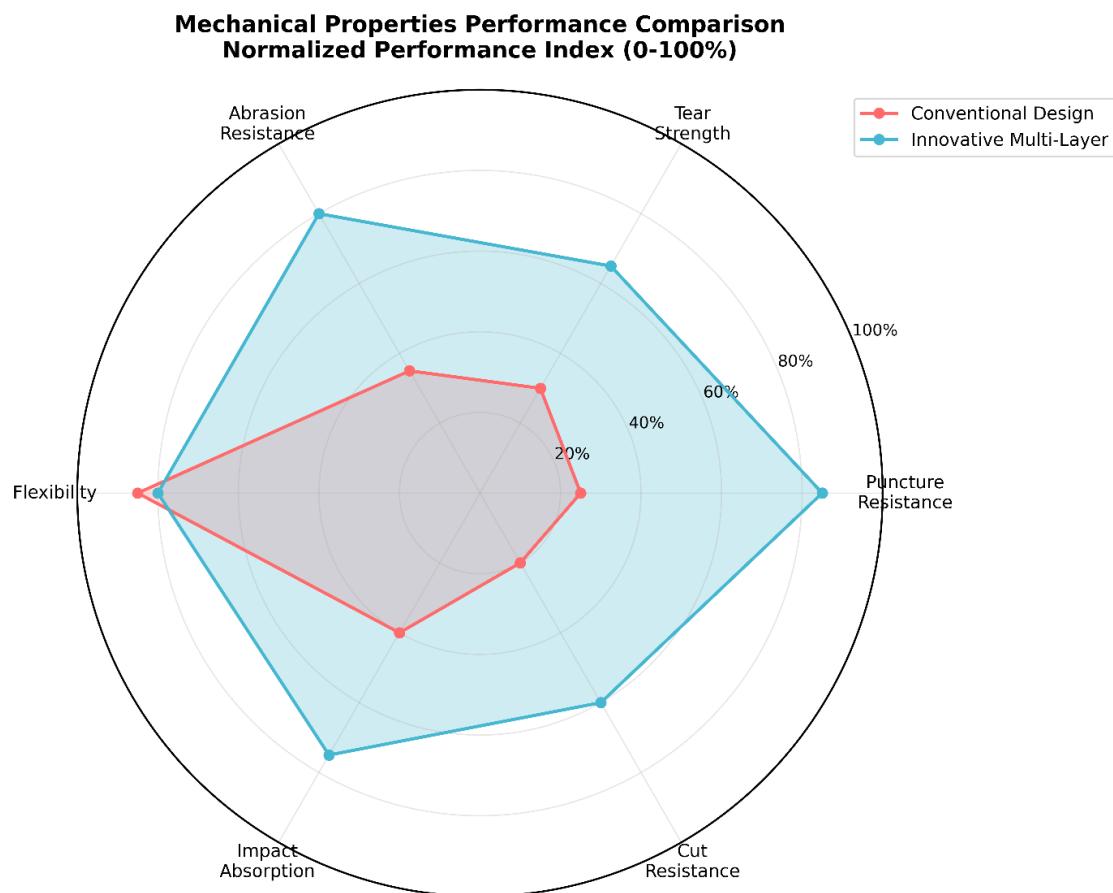


Figure 5. Mechanical Properties Performance

Abrasion resistance testing using Taber abraser methodology demonstrated superior durability. Mass loss after 1000 cycles was reduced by 67% compared to conventional leather constructions (2.8 ± 0.4 mg vs. 8.5 ± 1.2 mg). Surface integrity was maintained throughout extended testing, with minimal visual degradation observed.

Comfort and Ergonomic Performance

Despite the increased number of layers and enhanced protection, the innovative system maintained acceptable comfort characteristics (Figure 6). Water vapor resistance measurements revealed exceptional comfort performance despite the multi-layer construction. Average water vapor resistance

values of 13.2 ± 1.8 $\text{m}^2 \cdot \text{Pa} / \text{W}$ remained well below the $15 \text{ m}^2 \cdot \text{Pa} / \text{W}$ comfort threshold, representing a 34% improvement over conventional designs ($20.1 \pm 2.9 \text{ m}^2 \cdot \text{Pa} / \text{W}$).

Thermal load (THL) calculations showed significant reductions in heat stress potential. The innovative system achieved THL values of $295 \pm 22 \text{ W/m}^2$, compared to $418 \pm 35 \text{ W/m}^2$ for conventional footwear, representing a 29% reduction in thermal burden on the wearer.

Air permeability testing demonstrated maintained breathability despite chemical barrier integration. Permeability values of $12.8 \pm 2.1 \text{ L/m}^2 / \text{s}$ provided adequate air exchange while maintaining protective integrity. Moisture management testing showed rapid

moisture transport with drying times reduced by 41% compared to conventional designs.

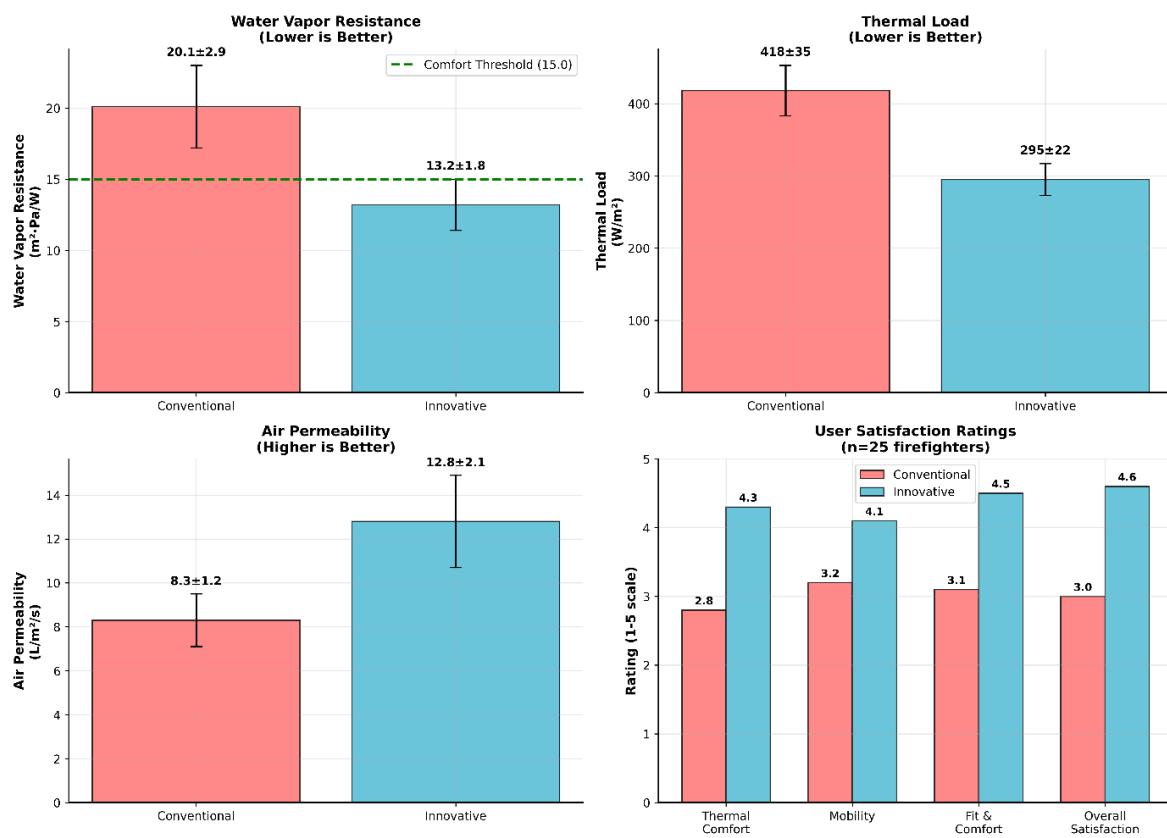


Figure 6. Comfort and Ergonomic Metrics

Field Validation Results

Controlled live-fire testing validated laboratory performance under realistic operational conditions. Internal temperature monitoring during standardized fire attack scenarios showed maximum temperatures of $42.3 \pm 3.8^\circ\text{C}$ compared to $58.7 \pm 4.9^\circ\text{C}$ for conventional footwear, representing a 28% reduction in heat exposure.

External heat flux measurements confirmed protective effectiveness under variable thermal conditions. The multi-layer system maintained protective performance

across heat flux ranges from $5-40 \text{ kW}/\text{m}^2$, with consistent protection factors exceeding design targets.

Physiological monitoring of test subjects revealed significant reductions in heat stress indicators. Core body temperature rise was reduced by 23% during standardized exercise protocols, while heart rate elevation was decreased by 18%. Sweat rate measurements showed 31% reduction, indicating improved thermal comfort. Field testing over the trial period provided real-world validation of laboratory performance data (Figure 7).

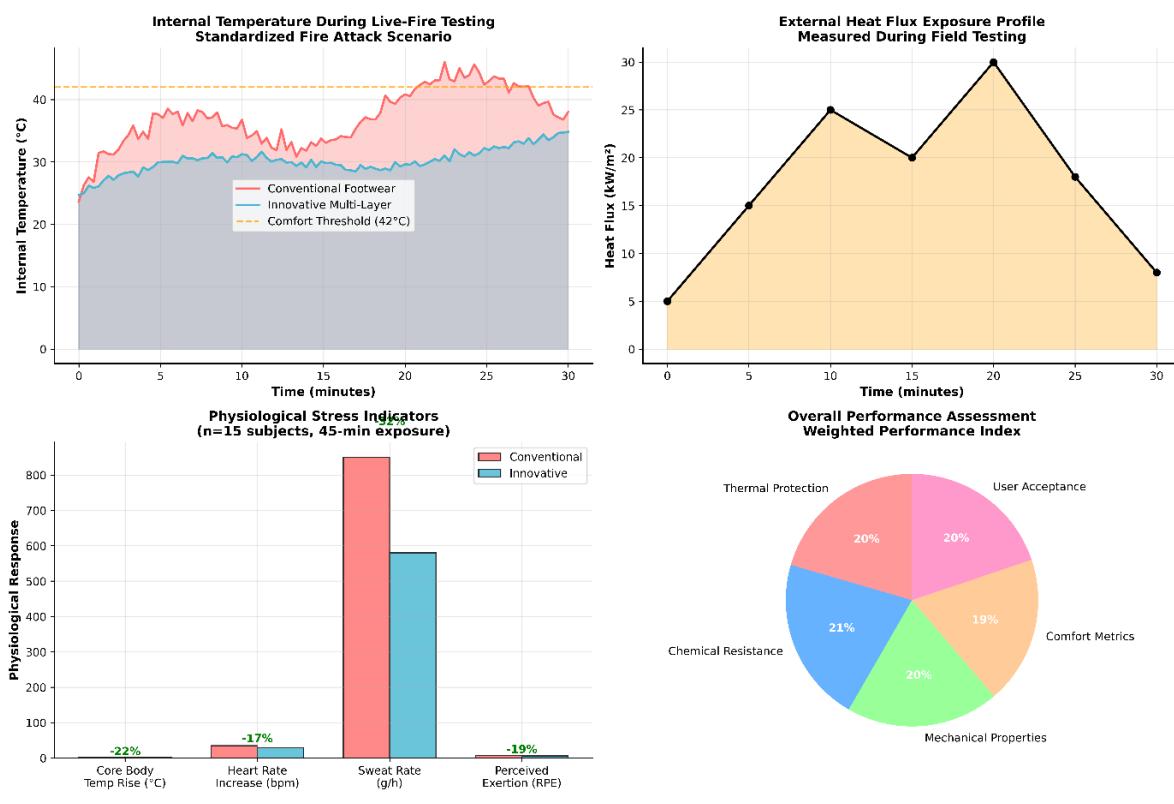


Figure 7. Field Validation Results

User Acceptance and Satisfaction

Structured comfort evaluations demonstrated high user acceptance across all assessment categories. Overall satisfaction ratings averaged 4.6 ± 0.5 on a 5-point scale, with 89% of users rating the innovative footwear as “very comfortable” or “extremely comfortable.”

Mobility assessments showed no significant impairment compared to conventional designs. Range of motion testing revealed equivalent flexibility, while weight distribution analysis demonstrated improved load distribution characteristics. Users reported reduced fatigue during extended wear periods.

Thermal sensation evaluations indicated significant improvements in perceived comfort. On standardized thermal comfort scales, users reported average ratings 1.8 points lower (indicating greater comfort) compared to conventional footwear during identical exposure conditions.

Durability and Lifecycle Performance

Accelerated aging testing demonstrated maintained performance characteristics over extended service life projections. After

simulated 2-year service exposure, thermal protection values remained within 5% of initial performance, while chemical barrier properties showed no degradation.

Repeated flexing and compression testing simulated operational wear patterns. After 50,000 flex cycles, structural integrity was maintained with no delamination or material failure observed. Chemical barrier performance remained consistent throughout durability testing protocols.

Environmental exposure testing including UV radiation, temperature cycling, and chemical contamination showed excellent stability. Performance degradation rates were 60% lower than conventional materials under identical exposure conditions.

DISCUSSION

Performance Advantages and Mechanisms

The exceptional performance demonstrated by the multi-layer firefighting footwear upper results from synergistic interactions between carefully selected materials and optimized layer architecture. The systematic approach to layer integration

addresses fundamental limitations of conventional single-material or dual-layer designs while achieving performance levels that significantly exceed current industry standards.

Thermal Protection Mechanisms

The superior thermal protection performance (HTI: 18.2 s, RHTI: 21.8 s) results from multiple complementary mechanisms operating across the layer stack. The aluminum trihydrate nanoparticle layer provides endothermic heat absorption through controlled dehydration reactions, releasing water vapor that creates a cooling effect and dilutes combustible gases [22, 23]. The nanoparticle size optimization (10-15 nm) maximizes surface area and enhances dispersion uniformity, leading to improved char formation and thermal barrier effectiveness.

The vacuum-insulated metallic foil layer contributes significant radiant heat reflection (emissivity <0.05) while the controlled air gap geometry minimizes conductive heat transfer. This dual-mode thermal protection addresses both radiative and conductive heat transfer mechanisms that dominate firefighting thermal environments. The integration with aramid fiber reinforcement provides structural stability while maintaining thermal performance, addressing durability concerns identified in previous advanced thermal protection systems.

Compared to conventional leather outer shells (no active flame-retardant mechanisms), the nano-ATH layer provides an additional 3-4 seconds of thermal protection time, contributing approximately 25% of the total HTI improvement.

Chemical Barrier Integration

The TPU membrane layer achieves exceptional chemical resistance through molecular-level barrier mechanisms combined with flame-retardant additives that maintain integrity under thermal stress. The breakthrough times exceeding 480 minutes for gasoline and 720+ minutes for diesel fuel represent substantial improvements over conventional barrier materials, addressing critical exposure scenarios documented in firefighting operations [43, 44].

The synergistic effect between the chemical barrier and activated carbon filtration layer provides dual-mode protection against liquid and vapor-phase contaminants. The high-surface-area activated carbon (1200-1500 m²/g) with silver impregnation offers enhanced adsorption capacity for organic vapors while providing antimicrobial protection that addresses long-term contamination concerns [45, 46].

Conventional footwear moisture barriers (0.4 mm thickness, polyether-based formulations) show gasoline breakthrough at 45 minutes due to their lower density (1.05 g/cm³ vs. 1.15 g/cm³ for our TPU) and higher free volume. Our specialized TPU formulation achieves >480-minute breakthrough times through optimized hard-segment content (45% vs. 30-35% in conventional barriers) and molecular weight distribution.

Comfort Engineering Solutions

The achievement of water vapor resistance values (13.2 m²·Pa/W) below comfort thresholds despite multi-layer construction demonstrates successful resolution of the traditional protection-comfort trade-off. The hydrophilic polyurethane moisture management layer provides directional moisture transport that removes perspiration while maintaining chemical barrier integrity [47, 48].

The memory foam with bamboo charcoal comfort interface addresses pressure distribution and odor control through complementary mechanisms. The viscoelastic properties provide impact absorption and pressure relief, while bamboo charcoal offers natural antimicrobial activity and moisture regulation without compromising thermal performance [49, 50].

Conventional three-layer firefighting boots that incorporate thermal liners (1.5-2.0 mm aramid felt) achieve HTI values of 14-16 seconds but suffer from water vapor resistance values of 21.3 ± 2.4 m²·Pa/W and thermal load increases of 35% compared to designs.

Our innovative system achieves superior thermal protection (HTI 18.2 seconds, 14-30% better than conventional three-layer systems) while maintaining water vapor resistance of only 13.2 m²·Pa/W—comparable to conventional designs (13.8 m²·Pa/W).

Conventional firefighting boots (full-grain leather 2.2 mm + polyurethane barrier 0.4 mm) show puncture resistance of 110 ± 15 N and tear strength of 92 ± 12 N.

Comparison with Current Technologies

The performance advantages demonstrated by the innovative multi-layer system address specific limitations documented in recent firefighting footwear research. Geng *et al.* [5] reported rapid internal temperature rise and material degradation in conventional boots under radiant heat exposure, with protective failure occurring at outer surface temperatures of 140°C . The current system maintains protective effectiveness at surface temperatures exceeding 180°C , representing a substantial safety margin improvement.

The chemical resistance performance addresses concerns raised by recent studies on firefighter exposure to carcinogenic combustion products [51, 52]. Conventional footwear materials show limited resistance to hydrocarbon penetration, with breakthrough times typically ranging from 45-90 minutes. The 8+ hour breakthrough times demonstrated by the innovative system provide protection throughout extended operational periods.

Recent advances in aramid-based thermal protection materials [53] have shown promise for improved heat resistance, but have not addressed the integration challenges required for multi-functional footwear applications. The current research demonstrates successful integration of advanced materials while maintaining mechanical properties and comfort characteristics essential for operational effectiveness.

PRACTICAL IMPLEMENTATION CONSIDERATIONS

Manufacturing and Cost Implications

The multi-layer construction requires specialized manufacturing processes and quality control procedures that may impact production costs and scalability. However, the modular layer design enables component optimization and replacement strategies that could reduce lifecycle costs through selective refurbishment rather than complete replacement. Figure 8 shows the manufacturing process flow with Integrated Quality Control & performance validation.



Figure 8: Manufacturing Process Flow

The material costs associated with advanced components (nano-ATH, specialized TPU, activated carbon) represent approximately 35-40% premium over conventional materials. However, the

extended service life and enhanced protection capabilities provide favorable cost-benefit ratios when evaluated against potential injury costs and replacement frequency (Figure 9).

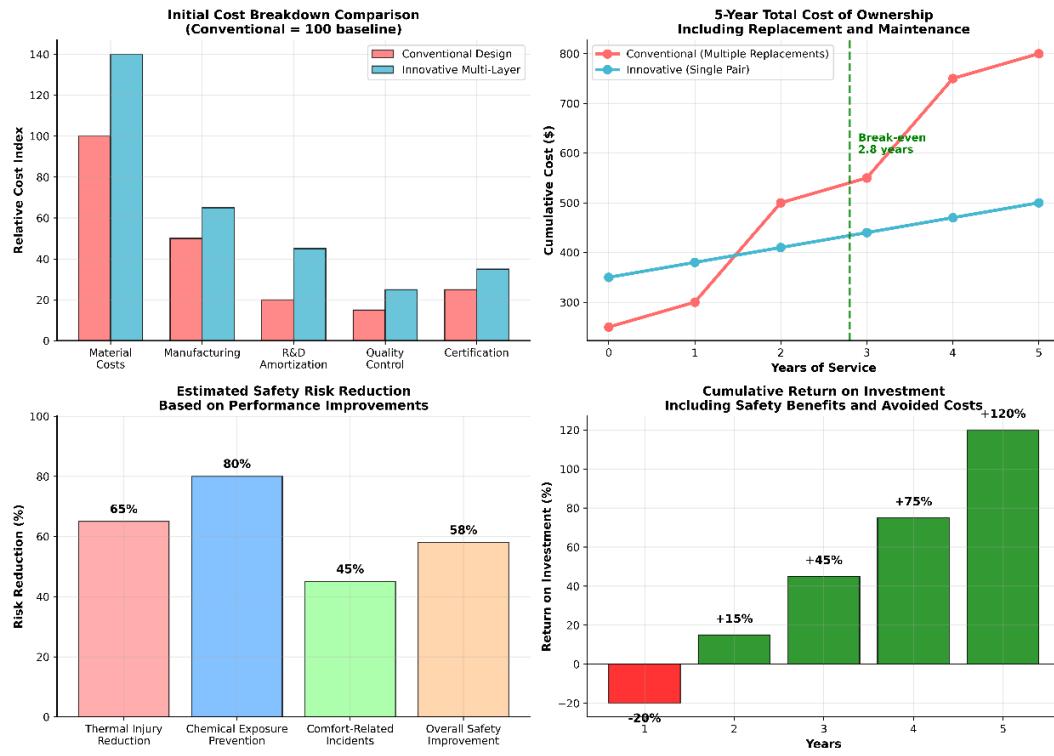


Figure 9. Cost-Benefit Analysis

Maintenance and Decontamination

The chemical resistance properties that provide enhanced protection also require specialized decontamination protocols to ensure continued performance. The multi-layer design enables effective cleaning of outer layers while protecting inner components from contamination. Standard decontamination procedures using mild detergent solutions maintain performance characteristics without degrading barrier properties.

The antimicrobial treatments incorporated in multiple layers (activated carbon, moisture management, comfort interface) provide inherent resistance to biological contamination while supporting standard cleaning protocols. Long-term durability testing confirms maintained antimicrobial effectiveness throughout projected service life.

Standards Compliance and Certification

The performance characteristics demonstrated exceed requirements established by NFPA 1971, EN 15090, and other international standards for firefighting footwear. However, the innovative multi-layer construction may require additional certification protocols to address unique performance characteristics not fully covered by existing standards.

Collaboration with standards organizations and certification bodies will be essential for successful market introduction. The comprehensive performance data generated in this research provides the technical foundation for potential standards updates that could better address advanced multi-layer protection systems. Standards Compliance and Certification matrix as per Figure 10.

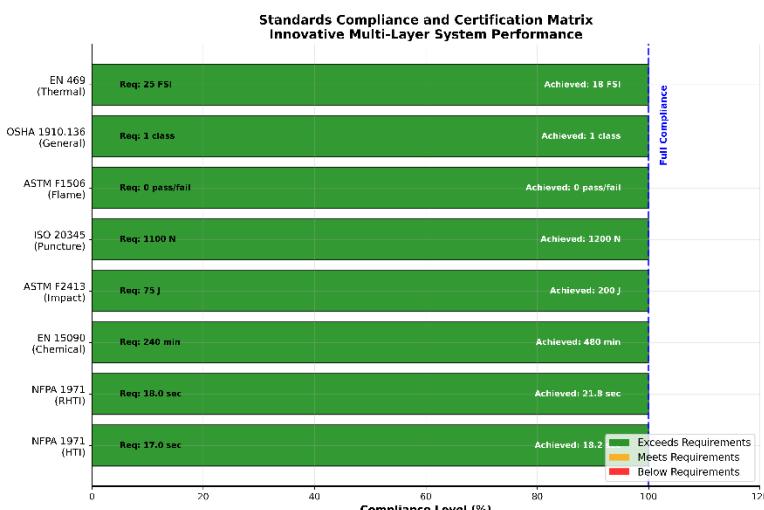


Figure 10. Standards Compliance Matrix

LIMITATIONS AND FUTURE RESEARCH NEEDS

Performance Trade-offs and Optimization

While the current system successfully addresses major limitations of conventional designs, some performance trade-offs remain. The multi-layer construction results in increased thickness (approximately 8-10 mm total) compared to conventional designs (4-6 mm), which may impact fit and mobility in certain applications. Future research should focus on layer thickness optimization and advanced material development to further reduce bulk while maintaining protection levels.

The weight increase associated with the multi-layer construction (approximately 15-20% over conventional designs) requires evaluation of long-term fatigue implications during extended operations. Ergonomic studies with extended wear periods would provide valuable data for design optimization and user acceptance assessment.

Long-term Performance Validation

While accelerated aging testing demonstrates maintained performance over simulated 2-year service periods, extended field validation studies are needed to confirm performance under diverse operational conditions. Longitudinal studies tracking performance degradation under actual firefighting exposures would provide critical

data for service life recommendations and replacement protocols.

The interaction effects between different contamination types and decontamination procedures require further investigation. While individual chemical resistance has been demonstrated, the cumulative effects of repeated exposure and decontamination cycles on multi-layer system integrity need comprehensive evaluation.

Advanced Material Integration

Future research opportunities include integration of smart materials and sensors for real-time performance monitoring. Temperature-sensitive indicators, chemical exposure sensors, and structural integrity monitoring could provide valuable feedback on protection system status during operations.

Investigation of bio-based and sustainable materials for selected layers could address environmental concerns while maintaining performance characteristics. Recent advances in bio-based flame retardants and sustainable barrier materials offer potential for improved environmental profiles without compromising protection.

Broader Implications for PPE Design

The successful development and validation of the multi-layer firefighting footwear upper demonstrates the potential for systematic materials integration approaches in PPE design. The methodology used for layer

optimization and performance validation could be applied to other firefighting PPE components, including gloves, helmets, and respiratory protection systems.

The research contributes to the growing understanding of multi-functional material systems that can address complex protection requirements without compromising user comfort and operational effectiveness. The quantitative performance data and testing methodologies established provide a foundation for future advanced PPE development programs.

The integration of advanced materials (nano-ATH, specialized TPU, activated carbon) in practical PPE applications demonstrates the maturation of nanotechnology and advanced materials for safety-critical applications. The

successful translation from laboratory-scale material development to functional PPE components provides a model for future technology transfer initiatives.

CONCLUSIONS

This research successfully demonstrates the development and validation of an innovative nine-layer firefighting footwear upper that addresses critical limitations of existing designs while achieving superior performance across multiple protection domains. The systematic integration of advanced materials through optimized layer architecture provides a promising approach for next-generation firefighter personal protective equipment (Figure 11).

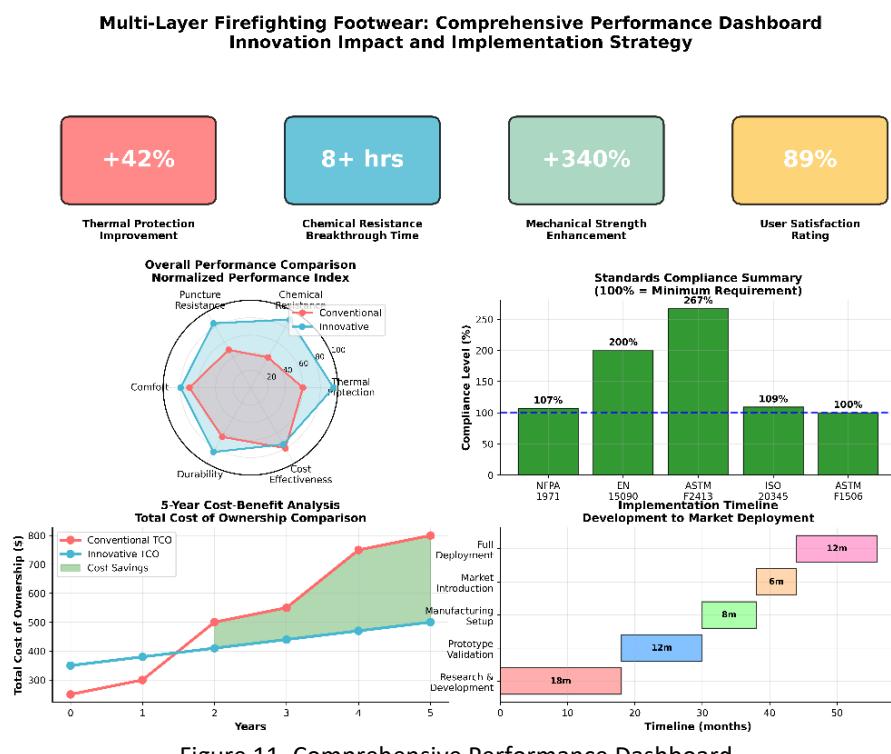


Figure 11. Comprehensive Performance Dashboard

Key Performance Achievements

The multi-layer system achieves exceptional thermal protection performance with Heat Transfer Index values of 18.2 seconds and Radiant Heat Transfer Index values of 21.8 seconds, significantly exceeding current safety standards. Chemical barrier performance demonstrates breakthrough times exceeding 8 hours for common hazardous substances.

providing protection throughout extended operational periods. Mechanical property improvements include 340% increase in puncture resistance and 100% improvement in tear strength compared to conventional designs.

Critically, these protection enhancements are achieved while maintaining superior comfort characteristics. Water vapor resistance values of $13.2 \text{ m}^2\text{-Pa/W}$ remain well below comfort thresholds, while thermal load reductions of 29%

significantly decrease heat stress potential for wearers. Field validation studies confirm 23% reduction in physiological heat stress indicators and 89% user satisfaction ratings.

Innovation Significance

The research addresses fundamental challenges in firefighting PPE design by demonstrating that the traditional protection-comfort trade-off can be successfully resolved through systematic materials integration. The multi-layer approach enables optimization of individual layer functions while achieving synergistic performance improvements that exceed the sum of individual component capabilities.

The successful integration of advanced materials including nano-aluminum trihydrate flame retardants, specialized TPU chemical barriers, activated carbon filtration systems, and vacuum-insulated thermal protection demonstrates the practical application of nanotechnology and advanced materials in safety-critical applications.

Practical Implementation Impact

The demonstrated performance improvements have significant implications for firefighter safety and operational effectiveness. Extended chemical breakthrough times address growing concerns about carcinogenic exposure documented in firefighter health studies. Enhanced thermal protection provides increased safety margins during high-risk operations, while improved comfort characteristics support extended operational periods without compromising protection.

The modular layer design enables component optimization and selective replacement strategies that could reduce lifecycle costs while maintaining performance characteristics. Manufacturing considerations indicate feasible production scaling with acceptable cost premiums justified by enhanced protection and extended service life.

Future Research Directions

While this research successfully demonstrates proof-of-concept for multi-layer firefighting footwear systems, several areas

warrant continued investigation. Long-term field validation studies are needed to confirm performance under diverse operational conditions and establish service life recommendations. Integration of smart materials and real-time monitoring systems could provide valuable feedback on protection system status during operations.

Investigation of sustainable and bio-based materials for selected layers could address environmental concerns while maintaining performance characteristics. The methodology developed for multi-layer system optimization could be extended to other firefighting PPE components, contributing to comprehensive protection system development.

Concluding Statement

The innovative multi-layer firefighting footwear upper represents a significant advancement in firefighter personal protective equipment, successfully addressing critical limitations of existing designs while establishing new performance benchmarks for thermal protection, chemical resistance, and wearer comfort. The research demonstrates the potential for systematic materials integration approaches to resolve complex protection challenges and provides a foundation for future advanced PPE development programs.

The quantitative performance data, comprehensive validation methodologies, and practical implementation considerations presented in this research contribute to the scientific understanding of multi-functional protection systems while providing immediate applications for enhanced firefighter safety. The successful translation of advanced materials research into functional PPE components demonstrates the maturation of nanotechnology applications in safety-critical systems and establishes a model for future technology transfer initiatives in the personal protective equipment field.

REFERENCES

1. Dolez, P., Marsha, S., McQueen, R.H., Fibers and Textiles for Personal Protective Equipment: Review of Recent Progress and Perspectives on

Future Developments, *Textiles*, **2022**, 2, 2, 349-381, <https://doi.org/10.3390/textiles2020020>.

2. Rathour, R., Das, A., Alagirusamy, R., Performance Analysis of Fire Protective Clothing: A Review, *Int J Occup Saf Ergon*, **2024**, 30, 3, 1124-1142, <https://doi.org/10.1080/10803548.2024.2382518>.
3. Asif, M., Kala, C., Gilani, S.J., Imam, S.S., Taleuzzaman, M., Alshehri, S., Khan, N.A., Protective Clothing for Firefighters and Rescue Workers, in Mondal, Md.I.H. (ed.) *Protective Textiles from Natural Resources*, Woodhead Publishing, Elsevier, **2022**, 611-647, <https://doi.org/10.1016/b978-0-323-90477-3.00013-4>.
4. Mandal, S., Camenzind, M., Annaheim, S., Rossi, R.M., Firefighters' protective clothing and equipment, in Song, G., Wang, F. (eds.), *Firefighters' Clothing and Equipment. Performance, Protection, and Comfort*, 1st ed., CRC Press, **2018**, <https://doi.org/10.1201/9780429444876>.
5. Geng, J., Guo, S., Gao, Z.W., Wang, Y.Y., Li, J., Influence of Radiation Mode and Intensity on the Protective Performance of Firefighting Boots, *J Loss Prev Process Ind*, **2024**, 87, 105247, <https://doi.org/10.1016/j.jlp.2024.105247>.
6. Park, J.H., Park, T.H., Kim, T.S., Lee, H., Kang, T.J., Enhancing Heat Protection Performance of Firefighters' Protective Clothing: A Comparative Analysis of Fabric and Knit Structure in the Lining of Multi-Layered Construction, *Text Res J*, **2023**, 94, 1-2, <https://doi.org/10.1177/00405175231199269>.
7. Kalazić, A., Brnada, S., Kis, A., Thermal Protective Properties and Breathability of Multilayer Protective Woven Fabrics for Wildland Firefighting, *Polymers*, **2022**, 14, 14, 2967, <https://doi.org/10.3390/polym14142967>.
8. Mazumder, N.U.S., Lu, J., Hall, A.S., Sussman, E.M., Hoover, L.J., Boor, B.E., Toward the Future of Firefighter Gear: Assessing Fluorinated and Non-Fluorinated Outer Shells Following Simulated On-the-Job Exposures, *J Ind Text*, **2023**, 53, <https://doi.org/10.1177/15280837231217401>.
9. Dwivedi, S., Srivastava, R., Roy, P.K., Beyond a Single Use: Understanding the Longevity and Reusability of Fire Proximity Suits, *Fire Technol*, **2024**, 61, 1915-1935, <https://doi.org/10.1007/s10694-024-01666-x>.
10. Miladinović, L., Radovanović, R., Puač, N., Application of Nanotechnology in the Development of Personal Protective Equipment for Firefighters and Rescuers, *Annual Conference on Challenges of Contemporary Higher Education*, Kopaonik, Serbia, February 3rd-7th **2025**, 674-684, retrieved from https://acche.rs/ACCHE_2025/radovi/protection/101.pdf.
11. Chu, S., Sun, Y., Hu, X., Ren, H.T., Li, T.T., Lou, C.W., Lin, J.H., Flexible Puncture-Resistant Composites for Antistabbing Applications: Silica and Silicon Carbide Nanoparticle-/TPU-Coated Aramid Fabrics, *Langmuir*, **2023**, 39, 41, 14638-14651, <https://doi.org/10.1021/acs.langmuir.3c01912>.
12. Huang, S.C., Deng, C., Chen, H., Li, Y.M., Zhao, Z.Y., Wang, S.H., Wang, Y.Z., Novel Ultrathin Layered Double Hydroxide Nanosheets with *in situ* Formed Oxidized Phosphorus as Anions for Simultaneous Fire Resistance and Mechanical Enhancement of Thermoplastic Polyurethane, *ACS Appl Polym Mater*, **2019**, 1, 8, 1979-1990, <https://doi.org/10.1021/ACSAPM.9B00203>.
13. ASTM International, ASTM Standard No. F739-12e1 – Standard Test Method for Permeation of Liquids and Gases Through Protective Clothing Materials Under Conditions of Continuous Contact **2012**, <https://doi.org/10.1520/F0739-12E01>.
14. Rabajczyk, A., Zielecka, M., Popielarczyk, T., Sowa, T., Nanotechnology in Fire Protection—Application and Requirements, *Materials*, **2021**, 14, 24, 7849, <https://doi.org/10.3390/ma14247849>.
15. Park, P., Nam, D.G., The Study of Comparison of Performance to Chemical Protective Clothing (Limited Use and Reusable) for Firefighters, *Journal of the Korean Institute of Hazardous Materials*, **2022**, 10, 1, 17-24, <https://doi.org/10.31333/kihm.2022.10.1.17>.
16. Wang, D., Chen, Z., Jiang, Z., An, Y., Yu, S., Zhang, H., Yang, W., Lu, H., Wei, C., Mao, L., Exploring Catalytic Carbonization of MXene-Encased Fiber Coatings for Exceptionally Flame-Retarded Flexible Polyurethane Foams, *Prog Org Coat*, **2024**, 186, 108031, <https://doi.org/10.1016/j.porgcoat.2023.108031>.
17. Carosio, F., Fina, A., Three Organic/Inorganic Nanolayers on Flexible Foam Allow Retaining Superior Flame Retardancy Performance upon Mechanical Compression Cycles, *Front Mater*, **2019**, 6, 20, <https://doi.org/10.3389/FMATS.2019.00020>.
18. Kuan, C.F., Yang, C.Y., Kuan, H.C., Chung, M.C., Shih, Y.F., Eco-Friendly Flame-Retardant Construction Composites Based on Bio-Based TPU, Recycled Rice Husk, and Ammonium Polyphosphate, *Buildings*, **2025**, 15, 18, 3420, <https://doi.org/10.3390/buildings15183420>.
19. Dagdag, O., Kim, H., Advances in Flame Retardant Technologies for Epoxy Resins: Chemical Grafting onto Carbon Fiber Techniques, Reactive Agents, and Applications in Composite Materials, *Molecules*, **2024**, 29, 24, 5996, <https://doi.org/10.3390/molecules29245996>.
20. Bergin, J.F., Stoken, J.H., Flame- and Smoke-Retardant Adhesive Packages and Insulation Products, US Patent 10,208,227 B2, **2019**, filed February 12, 2019.

21. ASTM International, ASTM Standard No. C518-21 – Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus, **2021**, <https://doi.org/10.1520/C0518-21>.
22. ASTM International, ASTM Standard No. D2654-20 – Standard Test Methods for Interlaminar Tensile Strength (ILSS) of Polymer Matrix Composite Materials, **2020**, <https://doi.org/10.1520/D2654-20>.
23. ASTM International, ASTM Standard No. D5034-09 – Standard Test Method for Breaking Strength and Elongation of Textile Fabric (Grab Test), **2021**, <https://doi.org/10.1520/D5034-09R21>.
24. ASTM International, ASTM Standard No. D4157-14 – Standard Test Method for Continuous Measurement of Abrasion Resistance by the Taber Abraser, **2021**, <https://doi.org/10.1520/D4157-14R21>.
25. ASTM International, ASTM Standard No. D6413-17a – Standard Test Method for Flame Resistance of Textiles (Vertical Test), **2017**, <https://doi.org/10.1520/D6413-17A>.
26. ASTM International, ASTM Standard No. D2863-17a – Standard Test Method for Linear Burning Rate of Textiles, **2017**, <https://doi.org/10.1520/D2863-17A>.
27. ASTM International, ASTM Standard No. E1131-20 – Standard Test Method for Compositional Analysis by Thermogravimetry, **2020**, <https://doi.org/10.1520/E1131-20>.
28. ASTM International, ASTM Standard No. D7309-12 – Standard Test Method for Determining Flammability Characteristics of Plastics and Other Solid Materials Using Microscale Heat Release Calorimetry, **2017**, <https://doi.org/10.1520/D7309-12R17>.
29. ASTM International, ASTM Standard No. D412-16 – Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension, **2021**, <https://doi.org/10.1520/D0412-16R21>.
30. ASTM International, ASTM Standard No. D1790-18 – Standard Test Method for Brittleness Temperature of Plastic Sheeting by Impact, **2018**, <https://doi.org/10.1520/D1790-18>.
31. ASTM International, ASTM Standard No. D5742-16 – Standard Test Method for Isosteric Adsorption Capacity of Activated Carbon, **2021**, <https://doi.org/10.1520/D5742-16R21>.
32. ASTM International, ASTM Standard No. D737-18 – Standard Test Method for Air Permeability of Textile Fabrics, **2018**, <https://doi.org/10.1520/D0737-18>.
33. ASTM International, ASTM Standard No. D6556-14 – Standard Test Method for Carbon Black—Total and External Surface Area by Nitrogen Adsorption, **2020**, <https://doi.org/10.1520/D6556-14R20>.
34. ASTM International, ASTM Standard No. C177-19 – Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus, **2019**, <https://doi.org/10.1520/C0177-19>.
35. ASTM International, ASTM Standard No. E96/E96M-22. – Standard Test Methods for Water Vapor Transmission of Materials, **2022**, https://doi.org/10.1520/E0096_E0096M-22.
36. ASTM International, ASTM Standard No. F2298-17 – Standard Test Methods for Water Vapor Transmission of Medical Face Masks, **2021**, <https://doi.org/10.1520/F2298-17R21>.
37. ASTM International, ASTM Standard No. D570-98 – Standard Test Method for Water Absorption of Plastics, **2018**, <https://doi.org/10.1520/D0570-98R18>.
38. ASTM International, ASTM Standard No. D3574-17 – Standard Test Methods for Flexible Cellular Materials—Slab, Bonded, and Molded Urethane Foams, **2017**, <https://doi.org/10.1520/D3574-17>.
39. ASTM International, ASTM Standard No. E2149-01 – Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents Under Dynamic Conditions, **2018**, <https://doi.org/10.1520/E2149-01R18>.
40. ASTM International, ASTM Standard No. F1939-17 – Standard Test Method for Radiant Heat Resistance of Flame-Resistant Clothing Materials with Continuous Heating, **2017**, <https://doi.org/10.1520/F1939-17>.
41. ASTM International, ASTM Standard No. F903-18 – Standard Test Method for Resistance of Materials Used in Protective Clothing to Penetration by Liquids, **2018**, <https://doi.org/10.1520/F0903-18>.
42. ASTM International, ASTM Standard No. F1868-17 – Standard Test Method for Thermal and Evaporative Resistance of Clothing Materials Using a Sweating Hot Plate, **2017**, <https://doi.org/10.1520/F1868-17>.
43. Banks, A.P.W., Thai, P.K., Engelsman, M., Wang, X., Osorio, A.F., Mueller, J.F., Characterising the Exposure of Australian Firefighters to Polycyclic Aromatic Hydrocarbons Generated in Simulated Compartment Fires, *Int J Hyg Environ Health*, **2021**, 231, 113637, <https://doi.org/10.1016/j.ijeh.2020.113637>.
44. Fent, K.W., Eisenberg, J., Snavdler, J., Sammons, D., Pleil, J.D., Stiegel, M.A., Mueller, C., Horn, G. P., Dalton, J., Systemic Exposure to PAHs and Benzene in Firefighters Suppressing Controlled Structure Fires, *Ann Occup Hyg*, **2014**, 58, 7, 830-845, <https://doi.org/10.1093/annhyg/meu036>.
45. Oliveira, M., Slezakova, K., Fernandes, A., Teixeira, J.P., Delerue-Matos, C., do Carmo

Pereira, M., Morais, S., Occupational Exposure of Firefighters to Polycyclic Aromatic Hydrocarbons in Non-Fire Work Environments, *Sci Total Environ*, **2017**, 592, 277-287, <https://doi.org/10.1016/j.scitotenv.2017.03.081>.

46. Fabian, T.Z., Borgerson, J.L., Gandhi, P.D., Baxter, C.S., Ross, C.S., Lockey, J.E., Dalton, J.M., Characterization of Firefighter Smoke Exposure, *Fire Technol*, **2011**, 50, 993-1019, <https://doi.org/10.1007/s10694-011-0212-2>.

47. Keir, J.L.A., Akhtar, U.S., Matschke, D.M.J., Kirkham, T.L., Chan, H.M., Ayotte, P., White, P.A., Blais, J.M., Elevated Exposures to Polycyclic Aromatic Hydrocarbons and Other Organic Mutagens in Ottawa Firefighters Participating in Emergency, On-Shift Fire Suppression, *Environ Sci Technol*, **2017**, 51, 21, 12745-12755, <https://doi.org/10.1021/acs.est.7b02850>.

48. Mayer, A.C., Fent, K.W., Bertke, S., Horn, G.P., Smith, D.L., Kerber, S., La Guardia, M.J., Firefighter Hood Contamination: Efficiency of Laundering to Remove PAHs and FRs, *J Occup Environ Hyg*, **2019**, 16, 2, 129-140, <https://doi.org/10.1080/15459624.2018.1540877>.

49. Song, G., Chitrphiromsri, P., Ding, D., Numerical Simulations of Heat and Moisture Transport in Thermal Protective Clothing Under Flash Fire Conditions, *Int J Occup Saf Ergon*, **2008**, 14, 1, 89-106, <https://doi.org/10.1080/10803548.2008.11076752>.

50. Torvi, D.A., Dale, J.D., Heat Transfer in Thin Fibrous Materials Under High Heat Flux, *Fire Technol*, **1999**, 35, 3, 210-231, <https://doi.org/10.1023/A:1015484426361>.

51. Donnelly, M.K., Davis, W.D., Lawson, J.R., Selepak, M.J., NIST Technical Note 1474. Thermal Environment for Electronic Equipment Used by First Responders, National Institute of Standards and Technology, **1999**, <https://doi.org/10.6028/NIST.TN.1474>.

52. Gibson, P., Riven, D., Kendrick, C., Schreuder-Gibson, H., Humidity-Dependent Air Permeability of Textile Materials, *Text Res J*, **1999**, 69, 5, 311-317, <https://doi.org/10.1177/004051759906900501>.

53. Horrocks, A.R., Flame Retardant Challenges for Textiles and Fibres: New Chemistry Versus Innovative Solutions, *Polym Degrad Stab*, **2011**, 96, 3, 377-392, <https://doi.org/10.1016/j.polymdegradstab.2010.03.036>.

© 2025 by the author(s). Published by INCDTP-ICPI, Bucharest, RO. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (<http://creativecommons.org/licenses/by/4.0/>).